Insulin, Insulin Resistance, and Exposure to Ambient Particulate Matter Air Pollution

Archana P. Lamichhane, PhD
Research Assistant Professor
University of North Carolina, Chapel Hill

WHI Investigator Meeting
May 6, 2016
Particulate Matter

- Complex mixture of extremely small particles and liquid droplets in the air
- Made up of: acids, organic chemicals, metals, soil and dust particles
- Particles ≤10 microns pass through nose and throat and enter the lungs, and cause serious health effects.
Significance and Rationale

- WHO: nearly 7 million premature deaths due to air pollution worldwide in year 2012

- Particulate matter (PM) air pollution: one of the largest avoidable causes of death and illness

- 347 million people worldwide have diabetes; 9.3% of the US adults have type 2 diabetes (T2D)

- A recent study from Canada reported that for every 10 $\mu g/m^3$ \uparrow PM2.5, there was a 11% \uparrow in incident diabetes (Chen et al. 2013)
Potential mechanisms: Air pollution induced IR and diabetes.
Background

Ambient PM and T2D

<table>
<thead>
<tr>
<th>References</th>
<th>Outcomes and Exposures</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kramer et al. 2010</td>
<td>T2D; 5-year mean PM10</td>
<td>↑PM ↑T2D</td>
</tr>
<tr>
<td>Puett et al. 2011</td>
<td>T2D; 1-year mean PM2.5, PM10, PM10-2.5</td>
<td>No significant associations</td>
</tr>
<tr>
<td>Coogan 2012</td>
<td>T2D; 1-year mean PM2.5, NOx</td>
<td>↑NOx ↑T2D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No association with PM2.5</td>
</tr>
<tr>
<td>Chen 2013</td>
<td>T2D; 6-year mean PM2.5</td>
<td>↑PM2.5 ↑T2D</td>
</tr>
<tr>
<td>Park 2015</td>
<td>T2D prevalence and incidence; 1-year mean PM2.5 and NOx</td>
<td>↑PM2.5 and ↑NOx ↑T2D prevalence, but not with incidence</td>
</tr>
</tbody>
</table>
Background

Ambient PM and Glucose Homeostasis Measures

<table>
<thead>
<tr>
<th>References</th>
<th>Outcomes and Exposures</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chuang 2011</td>
<td>Glucose, HBA1c; 1-year mean PM10 and PM2.5</td>
<td>↑PM ↑glucose and HBA1c</td>
</tr>
<tr>
<td>Thiering 2013</td>
<td>HOMA-IR; 2-year mean PM10, PM2.5</td>
<td>↑PM ↑HOMA-IR</td>
</tr>
<tr>
<td>Tamayo 2014</td>
<td>HBA1c; 1-year mean PM10</td>
<td>↑PM ↑HBA1c</td>
</tr>
<tr>
<td>Eze 2015</td>
<td>MetS components; 10-year mean PM10 and NO2</td>
<td>↑PM ↑MetS</td>
</tr>
</tbody>
</table>
Research Gaps

- Long-term PM exposures
- Cross-sectional designs
- Younger populations
- Heterogeneous definitions of diabetes
- Variable measures of glucose homeostasis
- Inconsistent exposure-outcome associations
To determine whether ambient PM is associated with impaired glucose homeostasis among women participating in the Women’s Health Initiative Clinical Trials (WHI CT)
Research Questions

1. Is short-term ambient PM exposure associated with impaired glucose homeostasis (insulin and insulin resistance) among post-menopausal women?

2. Is long-term ambient PM exposure associated with impaired glucose homeostasis (insulin and insulin resistance) among post-menopausal women?
Methods

Study Population
- WHI CT (Core analytes sample)

Design
- Longitudinal, repeated measures

Inclusions
- Center- and race-stratified 6% random minority oversample
- Data available at SV and AV 1,3 or 6

Exclusions
- Prevalent diabetes at SV (n=525 participants)
- Incident diabetes after baseline

Final Sample
- n=4,019 participants at SV
- n=15,221 observations over time
Outcomes: insulin (uIU/mL), insulin resistance (HOMA-IR), and insulin action (TG/HDL ratio)

Exposure: residential PM10 (2-day and 365-day mean)

Covariates: socio-demographic; clinical and behavioral; temporal and meteorological; and neighborhood socioeconomic
Methods

- **Exposure estimation method:** national scale, log normal ordinary kriging model (Liao et al. 2006)

- **Multiple imputation:** STATA using MI/CE method to impute missing outcomes, exposures and covariates
Methods

Statistical Analysis:

- 3-level, mixed-effects longitudinal models
 - Log-transformed outcomes
 - Random effects:
 - intercept & slope for PM @ center level (3)
 - intercept & slope for time @ participant level (2)
 - error @ measure level (1)
 - Implemented in STATA XTMIXED (MI ESTIMATE)
 - PM effects expressed as %Δ per 10 ug/m³ ↑ in PM

- All models were IPW for joint probability of sampling and attrition
Methods

3-level mixed effects model

\[
Y_{ijk} = \beta_1 + \beta_2 P_{ijk} + \beta_3 t_{ijk} + \beta_4 C_{ijk} + b_{1k}^{(3)} + b_{2k}^{(3)} (P_{ijk}) + b_{1jk}^{(2)} + b_{3jk}^{(2)} (t_{ijk}) + e_{ijk}^{(1)},
\]
Models:
- Model 1: unadjusted
- Model 2: + participant socio-demo attributes
- Model 3: + behavioral
- Model 4: + clinical
- Model 5: + temporal and meteorological
- Model 6: + Neighborhood SES
- Model 7: + CT arms
Results:
Demographics and Behavioral Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Weighted Mean (SE) or %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>62.6 (0.1)</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>83.0</td>
</tr>
<tr>
<td>Non-Hispanic Black</td>
<td>9.2</td>
</tr>
<tr>
<td>Hispanic</td>
<td>4.0</td>
</tr>
<tr>
<td>Others</td>
<td>3.7</td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>Less than college graduate</td>
<td>63.3</td>
</tr>
<tr>
<td>Bachelor degree and more</td>
<td>36.6</td>
</tr>
<tr>
<td>Current Smoking</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8.8</td>
</tr>
<tr>
<td>No</td>
<td>91.2</td>
</tr>
<tr>
<td>Current Drinking</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>57.1</td>
</tr>
<tr>
<td>No</td>
<td>42.8</td>
</tr>
</tbody>
</table>
Results:
Clinical and Environmental Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Weighted Mean (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical measures</td>
<td></td>
</tr>
<tr>
<td>Glucose, mg/dL</td>
<td>94.2 (0.2)</td>
</tr>
<tr>
<td>Insulin, ul U/ mL</td>
<td>10.9 (0.1)</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>2.6 (0.03)</td>
</tr>
<tr>
<td>TG/ HDL ratio</td>
<td>0.5 (0.01)</td>
</tr>
<tr>
<td>PM(_{10}) exposure ((\mu g/ m^3)) *</td>
<td>29.0 (0.2)</td>
</tr>
<tr>
<td>PM(_{10}) exposure ((\mu g/ m^3)) **</td>
<td>27.8 (0.1)</td>
</tr>
</tbody>
</table>

PM\(_{10}\), particulate matter of <10 μm in diameter.

* 2-day mean over exam day and prior day
** 365-day mean over exam day and 364 prior days
Results:
Short-term PM and Glucose Homeostasis Measures

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Models</th>
<th>%Δ</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin</td>
<td>Unadjusted</td>
<td>-0.71%</td>
<td>-1.43%, 0.02%</td>
</tr>
<tr>
<td></td>
<td>Fully Adjusted *</td>
<td>-0.87%</td>
<td>-1.69%, -0.03%</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>Unadjusted</td>
<td>-1.01%</td>
<td>-1.81%, -0.20%</td>
</tr>
<tr>
<td></td>
<td>Fully Adjusted *</td>
<td>-1.11%</td>
<td>-2.00%, -0.21%</td>
</tr>
<tr>
<td>TG/HDL ratio</td>
<td>Unadjusted</td>
<td>0.11%</td>
<td>-0.95%, 1.17%</td>
</tr>
<tr>
<td></td>
<td>Fully Adjusted *</td>
<td>0.43%</td>
<td>-0.63%, 1.51%</td>
</tr>
</tbody>
</table>

*Adjusted for participant sociodemographic, behavioral, clinical, temporal, meteorological, neighborhood socioeconomic attributes & CT arms

%Δ = percent change per 10 ug/m³ ↑ 2-day mean PM
Results:

Long-term PM and Glucose Homeostasis Measures

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Models</th>
<th>%Δ</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin</td>
<td>Unadjusted</td>
<td>-0.71%</td>
<td>-2.09%, 3.58%</td>
</tr>
<tr>
<td></td>
<td>Fully Adjusted *</td>
<td>-1.72%</td>
<td>-5.23%, 1.91%</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>Unadjusted</td>
<td>-0.06%</td>
<td>-2.99%, 2.95%</td>
</tr>
<tr>
<td></td>
<td>Fully Adjusted *</td>
<td>-2.51%</td>
<td>-6.37%, 1.51%</td>
</tr>
<tr>
<td>TG/HDL ratio</td>
<td>Unadjusted</td>
<td>-0.11%</td>
<td>-2.99%, 2.85%</td>
</tr>
<tr>
<td></td>
<td>Fully Adjusted *</td>
<td>-1.84%</td>
<td>-5.24%, 1.68%</td>
</tr>
</tbody>
</table>

*Adjusted for participant sociodemographic, behavioral, clinical, temporal, meteorological, neighborhood socioeconomic attributes & CT arms

%Δ = percent change per 10 ug/m³ ↑ 365-day mean PM
Sensitivity Analysis

Adjustments
- total caloric intake
- temporal/seasonal covariates (harmonics of time; season indicators; day of week)

Outlying/influential PM concentrations
- identified by an ESD multiple outlier procedure

PM Exposure Definitions
- 1- through 7-day means over lag days 0-7
- 2-day mean at different lags
- categorical (PM deciles)
- Used monthly PM estimates (Yanosky estimates) for long-term PM10 exposure

Alternative Models
- fixed effects
- one- & two-level
Conclusion

- Null to negative associations between glucose homeostasis measures and short- and long-term PM10 exposures
Interpretation/Discussion

- **Potential mechanisms** *(Wang 2009; Ozcan 2012)*

 Short-term exposure

 PM \rightarrow endoplasmic reticulum (ER) stress
 ER stress \rightarrow unfolded protein response (UPR)
 UPR \rightarrow ↓protein misfolding \rightarrow adaptive glucose homeostasis

 Long-term exposure

 PM \rightarrow ER stress \rightarrow apoptosis
 Apoptosis \rightarrow exacerbated hyperglycemia
Limitations and Strengths

Limitations:
- Study of relatively healthy, postmenopausal female volunteers in a CT
- Focus on 1993-2005 PM exposures

Strengths:
- Longitudinal design with repeated measures
- Short- and long-term PM exposures
- Multiple glucose homeostasis outcomes
- Multi-level mixed model
- Weighting for sampling and selection probabilities
- Multiple imputation of missing variables using chained equations
Study Collaborators

- Eric Whitsel
- Regina Shih
- Beth Ann Griffin
- Gregory Wellenius
- Duanping Liao
- Jeff Yanosky
- Jamie Madrigano
- Jay Stewart
THANK YOU