Sodium Intake and Osteoporosis. Findings from the Women's Health Initiative
Laura Carbone1,2, Karen C. Johnson3, Ying Huang4, Mary Pettinger4, Fridjtof Thomas3, Jane
Cauley5, Carolyn Crandall6, Lesley Tinker4, Meryl Susan LeBoff7, Jean Wactawski-Wende8,
Monique Bethel1,2, Wenjun Li9, Ross Prentice4
1 Department of Medicine, Division of Rheumatology, Medical College of Georgia at Georgia
Regents University and 2 Charlie Norwood Veterans Affairs, 1120 15th Street, BI-5076
Augusta, Georgia 30912
3 Department of Preventive Medicine, University of TN Health Science Center, 66 N. Pauline
Street, Suite 633, Memphis, TN 38163
4 Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview
Ave. N, M3-C102, PO Box 19024, Seattle, WA 98109
5 Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 130
De Soto Street, Pittsburgh, PA 15261
6 David Geffen School of Medicine at University of California, 10833 Le Conte Ave, Los Angeles,
CA 90095
7 Department of Medicine, Harvard University, Brigham and Women's Hospital, 75 Francis
Street, Boston, MA 02115
8 Department of Epidemiology and Environmental Health, University at Buffalo, The State
University of New York, 436 Kimball Tower, University at Buffalo, South Campus
Buffalo, NY 14214
9 Division of Preventive and Behavioral Medicine, University of Massachusetts Medical School,
55 Lake Avenue North Worcester, MA 01655

Presenter: Karen Johnson
ABSTRACT
Background: The relationship of sodium intake to changes in bone mineral density (BMD) in postmenopausal women has not been established, and no study to date has examined its relationship with fracture risk.

Methods: Prospective observational cohort study including 69,735 postmenopausal women in the Women’s Health Initiative over an average of 11·4 years of follow-up to examine whether sodium intake is associated with changes in BMD at the lumbar spine, total hip, femoral neck and total body and with incident fractures and whether this relationship is modified by potassium and/or calcium intake.

Results: In adjusted models, there was no association of calibrated sodium intake with changes in BMD at the hip or lumbar spine from baseline to three or six years (p≥0·06). Higher sodium intakes were associated with greater increases in total body BMD from baseline to three years (p=0·00) with a trend from baseline to six years (p=0·08) and with reduced hip fractures (HR 0·81 (95% CI 0·67-0·97). In sensitivity analyses that included BMI as an additional covariate in the models, there was no association of sodium intake with changes in BMD at any skeletal site (p≥0·32) or with incident fractures (p≥0·28). There was no association of sodium intake with incident fractures after adjusting for potassium intake (p≥0·30). Calcium intake did not modify the association between sodium intake and incident fractures (p≥0·20). Levels of sodium intake above or below currently recommended guidelines for cardiovascular disease (<2300 mg /day) were not associated with changes in BMD at any skeletal site from baseline to three (p≥0·66) or six years (p≥0·74) or with incident fractures (p≥0·70).

Conclusions and Relevance: Current population-based recommendations for sodium intake are unlikely to significantly impact osteoporosis.